Columnas

Las matemáticas y la música extraterrestre

Revisamos las misteriosas relaciones entre matemáticas, física y armonía musical, para concluir con una conjetura sobre la música como lenguaje universal

Las matemáticas aparecen constantemente en la naturaleza, pero, ¿alcanzan a explicar construcciones culturales como la música? En esta nueva columna revisamos las relaciones entre la física, matemáticas y armonía musical, y lo utilizamos para investigar la música extraterrestre, extrayendo curiosas conclusiones.

No me molestaría en absoluto que todo el programa lectivo de la E.S.O. en ciencias exactas, con sus sistemas de ecuaciones, formulación química y sus absurdas reglas de Ruffini, se sustituyera por la física de la pompa de jabón. Ningún objeto justifica de forma tan evidente por qué a alguien le puede interesar lo más mínimo dedicar su vida a ecuaciones, símbolos y razonamientos lógicos. “Papá, ¿por qué estudiamos matemáticas?”. “Porque las pompas de jabón son esferas. De todas las infinitas formas absurdas que un objeto puede adoptar, la pompa adopta la de una construcción mental simétrica y perfecta, la esfera, que no debería en principio vivir más que en nuestra imaginación”. La explicación es además muy elegante: la superficie de la pompa tiende a contraerse y reducir su superficie, como una goma. Pero no puede contraerse libremente porque en su interior hay moléculas de aire, que al comprimirse aumentarían la presión y empujarían desde dentro para extender la película de agua que forma la pompa. Así que la pompa lucha por tener poca superficie, y el aire por tener mucho volumen. ¿Cuál es la forma geométrica que necesita menos superficie para contener el mayor volumen posible? La respuesta es, matemáticas mediante, la esfera. Y de ahí la pompa.

Habréis notado que la explicación mata un poco el misterio: las leyes fundamentales de la naturaleza se ajustan a leyes matemáticas más o menos sencillas, y por tanto, las matemáticas aparecen de forma ubicua en la descripción de los objetos materiales. Pero hay entre todas estas trazas matemáticas que aparecen en la naturaleza una especialmente inesperada: las matemáticas de la música.

Las notas musicales se ajustan a relaciones matemáticas sencillas

Sitúense en el lugar de una persona que no tiene ni la más remota idea de lo que es la música. Nunca has escuchado ninguna pieza musical ni sabes lo que es una nota. Te llevan a un concierto y ves al contrabajista apretando las cuerdas del contrabajo en lugares muy concretos de su mástil. Te asombras al ver que incluso el guitarrista tiene marcadas en el mástil de su instrumento unas rayas verticales, los trastes, que le indican dónde deben estar pinzadas las cuerdas. El piano ya ni tiene cuerdas a la vista, sino que alguien ha dispuesto unas teclas con tonos predeterminados. No todos los tonos son válidos, sino que alguien parece haber seleccionado 12 tonos concretos de entre todo el espectro continuo, las notas musicales: Do, Do#, Re, etcétera. Razonablemente supondrías que es simplemente una convención adoptada tras siglos de azarosos giros histórico-culturales. De la misma forma que es una convención, digamos, cultural, utilizar el sonido ma-má para designar a la persona que te ha engendrado. Por si acaso, mides la frecuencia de las notas y empiezas a ver cosas raras. Mides la frecuencia de lo que llaman un Do y un Sol, y la proporción entre sus frecuencias es 3/2. Bueno, será casualidad. Haces lo mismo con el Do y el La, 5/3; el Do y el Fa, 4/3, etcétera. La proporción podría ser 1.7267483272619... pero no, es 4/3. ¿Cómo puede ser? La música y las notas musicales son muy anteriores a las matemáticas, no se trata por tanto de que alguien haya decidido un convenio con relaciones matemáticas sencillas para facilitar su transmisión. El hecho es que los hombres de diversas civilizaciones, de forma independiente, sin saber matemáticas y basándose en criterios puramente estéticos, ¡han escogido notas musicales que se relacionan por fórmulas matemáticas sencillas! Una locura. Que las matemáticas aparezcan en objetos materiales como la pompa de jabón es una cosa. Pero que aparezcan en una construcción cultural, artística, completamente desligada de las leyes físicas, es, admítanlo ya, lo más flipante que les han contando en toda su vida. Por cierto, esta observación ya la hizo Pitágoras, no será por falta de tiempo que los profesores de la E.S.O. no lo han metido en sus programas.

Explicación parcial de por qué hay matemáticas en la música

Igual que en el caso de la pompa de jabón, las matemáticas no emergen sin más, por casualidad. Hay una causa física que lo explica. Repetimos: ¡hay una causa física para las bases de nuestro criterio de armonía musical! Para ello vamos a analizar qué pasa cuando tocas una cuerda de un instrumento. Supón que tocas una cuerda de guitarra afinada en Do. A priori parece no haber mucho misterio, la cuerda parece vibrar en torno a su posición inicial más o menos así:

El número de oscilaciones por segundo, Herzios, determina el tono de la nota. Éste depende del grosor, longitud, composición y tensión de la cuerda. Si es un Do, digamos 523 Hz más o menos. Pero bueno, detalles sin importancia, a lo que íbamos: el movimiento de la cuerda parece a simple vista como el del dibujo superior, pero en realidad es una oscilación mucho más sucia, llena de serpenteos y pequeños subvientres. Y es que una cuerda, no tiende de forma natural a vibrar sólo de la forma sencilla que mostramos arriba, sino que puede hacer cosas además muy raras que es mejor que veáis en este vídeo.

Lo que éste nos muestra es que la cuerda tiende a oscilar formando pequeños vientres a lo largo de la longitud de la cuerda. En el vídeo nos muestran el caso de uno, dos y tres vientres. En realidad la oscilación de una cuerda real, digamos, de guitarra, es una mezcla de todos esos modos de oscilación. ¿Y qué tiene que ver esto con el misterio de las frecuencias de las notas? Bien, pues resulta que cada modo de oscilación (número de vientres) tiene una frecuencia diferente. Por ejemplo, el modo de tres vientres de una cuerda afinada en Do vibra exactamente a la frecuencia de un Sol. No por convenio, ni porque alguien haya construido la cuerda para ello. Una cuerda afinada en Do tiende de forma natural y por razones puramente físicas a tener un sonido secundario afinado en Sol. Por eso cuando tocamos un Do y un Sol juntos parecen empastar, sonar bien y satisfacer los, en principio, arbitrarios criterios estéticos musicales, y por eso todas las civilizaciones han escogido esas frecuencias específicas para componer música. Lo mismo pasa con las otras notas musicales, y con otros dispositivos generadores de vibración: membranas, tubos, trozos de metal. Incluso con vibraciones no sólo de sonido, sino para ondas en cualquier medio, lo que me lleva a la siguiente conjetura.

Conjetura: Si hay vida inteligente en otros planetas y hacen música, ésta será con notas y escalas similares a las nuestras.

Poca broma. Hay motivos de sobra para justificar la conjetura. No podemos saber si los extraterrestres son capaces de percibir el sonido, entendido como ondas mecánicas en el aire. Quizá en su planeta ni siquiera hay aire. Puede que perciban las ondas de campo magnético, corriente eléctrica, ondas de sonido en su atmósfera de metano o lo que sea. El caso es que el fenómeno físico de los modos de oscilación descrito en la sección anterior (lo de los vientres) es universal, pasa siempre con todo mecanismo oscilante. Si los extraterrestres tienen un instrumento musical hecho con un trozo de metal que transmite oscilaciones en el campo magnético que ellos pueden “escuchar”, entonces el Do magnético tendrá un sonido secundario de la nota Sol, magnética. Y el Do mezclará bien con el Sol, y lo mismo para las demás notas, y por tanto, escalas musicales. Es de esperar que todo sonará bastante convencional. Así que ya ven, si llegara a la Tierra la señal de una emisión extragaláctica, con música de un disco enviado por unos extraterrestres hace cientos de miles de años, en PlayGround probablemente ni lo reseñaríamos.

Tags:

¿Te ha gustado este contenido?...

Hoy en PlayGround Vídeo:

Ver todos los vídeos

Hoy en PlayGround Video



 

cerrar
cerrar